3.4.5 \(\int \frac {\cot ^2(c+d x) \csc ^3(c+d x)}{a+a \sin (c+d x)} \, dx\) [305]

3.4.5.1 Optimal result
3.4.5.2 Mathematica [A] (verified)
3.4.5.3 Rubi [A] (verified)
3.4.5.4 Maple [A] (verified)
3.4.5.5 Fricas [A] (verification not implemented)
3.4.5.6 Sympy [F]
3.4.5.7 Maxima [B] (verification not implemented)
3.4.5.8 Giac [A] (verification not implemented)
3.4.5.9 Mupad [B] (verification not implemented)

3.4.5.1 Optimal result

Integrand size = 29, antiderivative size = 95 \[ \int \frac {\cot ^2(c+d x) \csc ^3(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {3 \text {arctanh}(\cos (c+d x))}{8 a d}+\frac {\cot (c+d x)}{a d}+\frac {\cot ^3(c+d x)}{3 a d}-\frac {3 \cot (c+d x) \csc (c+d x)}{8 a d}-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 a d} \]

output
-3/8*arctanh(cos(d*x+c))/a/d+cot(d*x+c)/a/d+1/3*cot(d*x+c)^3/a/d-3/8*cot(d 
*x+c)*csc(d*x+c)/a/d-1/4*cot(d*x+c)*csc(d*x+c)^3/a/d
 
3.4.5.2 Mathematica [A] (verified)

Time = 1.42 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.32 \[ \int \frac {\cot ^2(c+d x) \csc ^3(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {\csc ^4(c+d x) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^2 \left (66 \cos (c+d x)+72 \left (\log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )\right ) \sin ^4(c+d x)+2 \cos (3 (c+d x)) (-9+16 \sin (c+d x))-48 \sin (2 (c+d x))\right )}{192 a d (1+\sin (c+d x))} \]

input
Integrate[(Cot[c + d*x]^2*Csc[c + d*x]^3)/(a + a*Sin[c + d*x]),x]
 
output
-1/192*(Csc[c + d*x]^4*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^2*(66*Cos[c + 
 d*x] + 72*(Log[Cos[(c + d*x)/2]] - Log[Sin[(c + d*x)/2]])*Sin[c + d*x]^4 
+ 2*Cos[3*(c + d*x)]*(-9 + 16*Sin[c + d*x]) - 48*Sin[2*(c + d*x)]))/(a*d*( 
1 + Sin[c + d*x]))
 
3.4.5.3 Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.96, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.345, Rules used = {3042, 3318, 3042, 4254, 2009, 4255, 3042, 4255, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^2(c+d x) \csc ^3(c+d x)}{a \sin (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (c+d x)^2}{\sin (c+d x)^5 (a \sin (c+d x)+a)}dx\)

\(\Big \downarrow \) 3318

\(\displaystyle \frac {\int \csc ^5(c+d x)dx}{a}-\frac {\int \csc ^4(c+d x)dx}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \csc (c+d x)^5dx}{a}-\frac {\int \csc (c+d x)^4dx}{a}\)

\(\Big \downarrow \) 4254

\(\displaystyle \frac {\int \left (\cot ^2(c+d x)+1\right )d\cot (c+d x)}{a d}+\frac {\int \csc (c+d x)^5dx}{a}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\int \csc (c+d x)^5dx}{a}+\frac {\frac {1}{3} \cot ^3(c+d x)+\cot (c+d x)}{a d}\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {\frac {3}{4} \int \csc ^3(c+d x)dx-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 d}}{a}+\frac {\frac {1}{3} \cot ^3(c+d x)+\cot (c+d x)}{a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3}{4} \int \csc (c+d x)^3dx-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 d}}{a}+\frac {\frac {1}{3} \cot ^3(c+d x)+\cot (c+d x)}{a d}\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {\frac {3}{4} \left (\frac {1}{2} \int \csc (c+d x)dx-\frac {\cot (c+d x) \csc (c+d x)}{2 d}\right )-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 d}}{a}+\frac {\frac {1}{3} \cot ^3(c+d x)+\cot (c+d x)}{a d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3}{4} \left (\frac {1}{2} \int \csc (c+d x)dx-\frac {\cot (c+d x) \csc (c+d x)}{2 d}\right )-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 d}}{a}+\frac {\frac {1}{3} \cot ^3(c+d x)+\cot (c+d x)}{a d}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {\frac {3}{4} \left (-\frac {\text {arctanh}(\cos (c+d x))}{2 d}-\frac {\cot (c+d x) \csc (c+d x)}{2 d}\right )-\frac {\cot (c+d x) \csc ^3(c+d x)}{4 d}}{a}+\frac {\frac {1}{3} \cot ^3(c+d x)+\cot (c+d x)}{a d}\)

input
Int[(Cot[c + d*x]^2*Csc[c + d*x]^3)/(a + a*Sin[c + d*x]),x]
 
output
(Cot[c + d*x] + Cot[c + d*x]^3/3)/(a*d) + (-1/4*(Cot[c + d*x]*Csc[c + d*x] 
^3)/d + (3*(-1/2*ArcTanh[Cos[c + d*x]]/d - (Cot[c + d*x]*Csc[c + d*x])/(2* 
d)))/4)/a
 

3.4.5.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3318
Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^( 
n_.))/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[g^2/a   Int 
[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Simp[g^2/(b*d)   Int 
[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, 
d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0]
 

rule 4254
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
andIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]], x] /; FreeQ[{c, 
 d}, x] && IGtQ[n/2, 0]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
3.4.5.4 Maple [A] (verified)

Time = 0.24 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.28

method result size
parallelrisch \(\frac {-3 \left (\cot ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \left (\cot ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-8 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-24 \left (\cot ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+24 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+72 \cot \left (\frac {d x}{2}+\frac {c}{2}\right )+72 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-72 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{192 d a}\) \(122\)
derivativedivides \(\frac {\frac {\left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4}-\frac {2 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3}+2 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-6 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+\frac {6}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}+6 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {1}{4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}+\frac {2}{3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}-\frac {2}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{16 d a}\) \(124\)
default \(\frac {\frac {\left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4}-\frac {2 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3}+2 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-6 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+\frac {6}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}+6 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {1}{4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}+\frac {2}{3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}-\frac {2}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{16 d a}\) \(124\)
risch \(\frac {9 \,{\mathrm e}^{7 i \left (d x +c \right )}-48 i {\mathrm e}^{4 i \left (d x +c \right )}-33 \,{\mathrm e}^{5 i \left (d x +c \right )}+64 i {\mathrm e}^{2 i \left (d x +c \right )}-33 \,{\mathrm e}^{3 i \left (d x +c \right )}-16 i+9 \,{\mathrm e}^{i \left (d x +c \right )}}{12 a d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{4}}+\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{8 d a}-\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{8 d a}\) \(134\)
norman \(\frac {-\frac {1}{64 a d}+\frac {5 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{192 d a}-\frac {\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}{12 d a}+\frac {\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d a}-\frac {\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d a}+\frac {\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )}{12 d a}-\frac {5 \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{192 d a}+\frac {\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )}{64 d a}+\frac {3 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d a}}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {3 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 a d}\) \(204\)

input
int(cos(d*x+c)^2*csc(d*x+c)^5/(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)
 
output
1/192*(-3*cot(1/2*d*x+1/2*c)^4+3*tan(1/2*d*x+1/2*c)^4+8*cot(1/2*d*x+1/2*c) 
^3-8*tan(1/2*d*x+1/2*c)^3-24*cot(1/2*d*x+1/2*c)^2+24*tan(1/2*d*x+1/2*c)^2+ 
72*cot(1/2*d*x+1/2*c)+72*ln(tan(1/2*d*x+1/2*c))-72*tan(1/2*d*x+1/2*c))/d/a
 
3.4.5.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.51 \[ \int \frac {\cot ^2(c+d x) \csc ^3(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {18 \, \cos \left (d x + c\right )^{3} - 9 \, {\left (\cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{2} + 1\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 9 \, {\left (\cos \left (d x + c\right )^{4} - 2 \, \cos \left (d x + c\right )^{2} + 1\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - 16 \, {\left (2 \, \cos \left (d x + c\right )^{3} - 3 \, \cos \left (d x + c\right )\right )} \sin \left (d x + c\right ) - 30 \, \cos \left (d x + c\right )}{48 \, {\left (a d \cos \left (d x + c\right )^{4} - 2 \, a d \cos \left (d x + c\right )^{2} + a d\right )}} \]

input
integrate(cos(d*x+c)^2*csc(d*x+c)^5/(a+a*sin(d*x+c)),x, algorithm="fricas" 
)
 
output
1/48*(18*cos(d*x + c)^3 - 9*(cos(d*x + c)^4 - 2*cos(d*x + c)^2 + 1)*log(1/ 
2*cos(d*x + c) + 1/2) + 9*(cos(d*x + c)^4 - 2*cos(d*x + c)^2 + 1)*log(-1/2 
*cos(d*x + c) + 1/2) - 16*(2*cos(d*x + c)^3 - 3*cos(d*x + c))*sin(d*x + c) 
 - 30*cos(d*x + c))/(a*d*cos(d*x + c)^4 - 2*a*d*cos(d*x + c)^2 + a*d)
 
3.4.5.6 Sympy [F]

\[ \int \frac {\cot ^2(c+d x) \csc ^3(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\int \frac {\cos ^{2}{\left (c + d x \right )} \csc ^{5}{\left (c + d x \right )}}{\sin {\left (c + d x \right )} + 1}\, dx}{a} \]

input
integrate(cos(d*x+c)**2*csc(d*x+c)**5/(a+a*sin(d*x+c)),x)
 
output
Integral(cos(c + d*x)**2*csc(c + d*x)**5/(sin(c + d*x) + 1), x)/a
 
3.4.5.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 195 vs. \(2 (87) = 174\).

Time = 0.21 (sec) , antiderivative size = 195, normalized size of antiderivative = 2.05 \[ \int \frac {\cot ^2(c+d x) \csc ^3(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {\frac {\frac {72 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {24 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {8 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {3 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}}{a} - \frac {72 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a} - \frac {{\left (\frac {8 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {24 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {72 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - 3\right )} {\left (\cos \left (d x + c\right ) + 1\right )}^{4}}{a \sin \left (d x + c\right )^{4}}}{192 \, d} \]

input
integrate(cos(d*x+c)^2*csc(d*x+c)^5/(a+a*sin(d*x+c)),x, algorithm="maxima" 
)
 
output
-1/192*((72*sin(d*x + c)/(cos(d*x + c) + 1) - 24*sin(d*x + c)^2/(cos(d*x + 
 c) + 1)^2 + 8*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 - 3*sin(d*x + c)^4/(cos 
(d*x + c) + 1)^4)/a - 72*log(sin(d*x + c)/(cos(d*x + c) + 1))/a - (8*sin(d 
*x + c)/(cos(d*x + c) + 1) - 24*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 72*s 
in(d*x + c)^3/(cos(d*x + c) + 1)^3 - 3)*(cos(d*x + c) + 1)^4/(a*sin(d*x + 
c)^4))/d
 
3.4.5.8 Giac [A] (verification not implemented)

Time = 0.34 (sec) , antiderivative size = 157, normalized size of antiderivative = 1.65 \[ \int \frac {\cot ^2(c+d x) \csc ^3(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\frac {72 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a} + \frac {3 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 8 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 24 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 72 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{4}} - \frac {150 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 72 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 24 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 8 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3}{a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4}}}{192 \, d} \]

input
integrate(cos(d*x+c)^2*csc(d*x+c)^5/(a+a*sin(d*x+c)),x, algorithm="giac")
 
output
1/192*(72*log(abs(tan(1/2*d*x + 1/2*c)))/a + (3*a^3*tan(1/2*d*x + 1/2*c)^4 
 - 8*a^3*tan(1/2*d*x + 1/2*c)^3 + 24*a^3*tan(1/2*d*x + 1/2*c)^2 - 72*a^3*t 
an(1/2*d*x + 1/2*c))/a^4 - (150*tan(1/2*d*x + 1/2*c)^4 - 72*tan(1/2*d*x + 
1/2*c)^3 + 24*tan(1/2*d*x + 1/2*c)^2 - 8*tan(1/2*d*x + 1/2*c) + 3)/(a*tan( 
1/2*d*x + 1/2*c)^4))/d
 
3.4.5.9 Mupad [B] (verification not implemented)

Time = 9.77 (sec) , antiderivative size = 151, normalized size of antiderivative = 1.59 \[ \int \frac {\cot ^2(c+d x) \csc ^3(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{8\,a\,d}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{24\,a\,d}+\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{64\,a\,d}+\frac {3\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{8\,a\,d}-\frac {3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{8\,a\,d}+\frac {{\mathrm {cot}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,\left (6\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3-2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+\frac {2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{3}-\frac {1}{4}\right )}{16\,a\,d} \]

input
int(cos(c + d*x)^2/(sin(c + d*x)^5*(a + a*sin(c + d*x))),x)
 
output
tan(c/2 + (d*x)/2)^2/(8*a*d) - tan(c/2 + (d*x)/2)^3/(24*a*d) + tan(c/2 + ( 
d*x)/2)^4/(64*a*d) + (3*log(tan(c/2 + (d*x)/2)))/(8*a*d) - (3*tan(c/2 + (d 
*x)/2))/(8*a*d) + (cot(c/2 + (d*x)/2)^4*((2*tan(c/2 + (d*x)/2))/3 - 2*tan( 
c/2 + (d*x)/2)^2 + 6*tan(c/2 + (d*x)/2)^3 - 1/4))/(16*a*d)